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For the resistive pressure-gradient-driven turbulence model, the transition from laminar regime to fully
developed turbulence is not simple and goes through several phases. For low values of the plasma parameter
�, a single quasicoherent structure forms. As � increases, several of these structures may emerge and in turn
take the dominant role. Finally, at high �, fully developed turbulence with a broad spectrum is established. A
suitable characterization of this transition can be given in terms of topological properties of the flow. Here, we
analyze these properties that provide an understanding of the turbulence-induced transport and give a measure
of the breaking of the homogeneity of the turbulence. To this end, an approach is developed that allows
discriminating between topological properties of plasma turbulence flows that are relevant to the transport
dynamics and the ones that are not. This is done using computational homology tools and leads to a faster
convergence of numerical results for a fixed level of resolution than previously presented in Phys. Rev. E 78,
066402 �2008�.
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I. INTRODUCTION

In recent years, numerical studies of tracers in turbulent
plasma models have revealed the nondiffusive nature of the
particle tracer transport at least in some parameter range
�1–7�. All these studies have looked at the different proper-
ties of the particle tracer distribution, their velocity distribu-
tion, and the long-range correlations. From these studies, it
has been possible to determine the types of fractional differ-
ential equations �8� that could describe the transport of those
particle tracers.

What has not yet been done is a study of the properties of
the underlying turbulence that lead to these features of the
particle tracer transport. In this paper, we will take a first step
in this direction by using quantitative measures of the topo-
logical properties of the turbulent flow to connect with the
properties of the distribution function of the particle tracers
in these turbulent flows.

In the present study, we use the resistive pressure-
gradient-driven turbulence model. In Ref. �9� and for this
model, the transition from laminar regime to fully developed
turbulence was described. As the plasma � increases, the
turbulence and the induced transport go through several
phases. For low values of the plasma parameter �, a single
quasicoherent structure forms �2,9� and a single toroidal
mode dominates the spectrum. As � increases, the turbulence
becomes highly intermittent because several of these quasi-
coherent structures may emerge and in turn take the domi-
nant role. Finally, at high �, fully developed turbulence with
a broad spectrum is established.

All the phases of this transition were identified �2,9,10�
through spectral analysis and visualization of the flow struc-
tures. However, the topological changes were not properly
characterized by any quantitative diagnostics of the topology
properties of the flow, which seems to be the most appropri-
ate way of characterizing the transition.

In this paper, we do this quantitative evaluation of the
topological properties of the flows using and improving the
topological techniques that we have introduced in Ref. �11�.
The approach proposed in that paper consists on the numeri-
cal determination of the Betti numbers of the isosurfaces of
the velocity stream function.

For the complicated flow structures obtained in numerical
calculations of plasma turbulence, the determination of the
Betti numbers is far from trivial. In Ref. �11� and in what
follows, we use the software package provided by the Com-
putational Homology Project �CHomP� �12� to carry out this
determination. The CHomp group has developed many nu-
merical tools. A description of such tools and some examples
of applications can be found in the CHomP website �12�.
Reference �13� gives a systematic computational approach to
the homology of cubical sets, which is the approach that we
follow here.

In our initial numerical studies �11�, two main issues have
emerged. One is a resolution limitation, which was only par-
tially addressed in Ref. �11�. Namely, for high resolution
calculations, the memory limit set in the CHomP software
does not allow us an accurate determination of the Betti
numbers of the topological structure of the flows from our
high � calculations. Here � is the ratio of the plasma pres-
sure to the magnetic pressure.

The second issue is that not all topological structures are
equally relevant to the transport physics, which is the goal of*lgarcia@fis.uc3m.es
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our studies. For instance, the existence of filaments in the
flow structure that twist around the whole toroidal plasma
and create large-scale cycles plays an important role in the
pseudochaotic behavior of the tracer particles �2,10,14�. Fur-
thermore, such filaments break the homogeneity and isotropy
of the plasma turbulence modifying as a consequence the
turbulence-induced transport. Small very localized cycles,
which are not relevant to the transport, may also exist. Some
of those small cycles are simply spurious, originating from a
lack of numerical resolution. However, both the large-scale
cycles and the small-scale cycles contribute to the value of
the Betti numbers of the velocity stream function isosurfaces.

In this paper, we develop an approach that allows the
determination of an upper bound to the number of the large-
scale cycles and the distribution of large-scale connected
components in the plasma flow. This approach, in isolating
the large-scale cycles from almost all small cycles, gives a
determination of their number that converges very fast. The
convergence is faster than the convergence of the total num-
ber of cycles for a given level of resolution of the flow struc-
ture. We also determine a way of identifying the large-scale
components, the ones that do not depend on the numerical
resolution level. The distribution of these components is
equivalent to the eddy-size distribution and therefore rel-
evant to the transport physics.

The number of large-scale connected components of the
flow and the number of large-scale cycles permit a quantita-
tive characterization of the transition from laminar regime to
fully developed turbulence. They also provide the basis for
understanding the transport properties in these phases and
open a way of connecting turbulence and induced transport.
We also show that even in the high � case, when graphical
representations of the flow seem to indicate that the turbu-
lence is relatively homogeneous, there are still large flow
structures of complex topology. These structures effectively
break the homogeneity and isotropy of the turbulence.

The rest of the paper is organized as follows. In Sec. II,
we introduce the topological parameters that will be used in
the present analysis. In Sec. III, the dynamical evolution of
these parameters is analyzed for different values of the
plasma parameter �. A more detailed analysis of the flow
structures from the perspective of their radial extent is done
in Sec. IV. In Sec. V, we show how changes in the flow
topology affect the transport of tracers. Finally, in Sec.VI,
the conclusions of this paper are given.

II. TOPOLOGICAL PARAMETERS OF THE FLOW
STRUCTURES

Our starting point is the topological analysis of the plasma
flows. We center our analysis on the velocity stream function
�. The plasma flow velocity, V�, is given in terms of the
velocity stream function, �, by

V� = �� � b . �1�

In this expression, b is a unit vector in the direction of the
magnetic field. The velocity stream function is directly re-
lated to the electrostatic potential of the plasma � by �=
−� /B, where B is the intensity of the magnetic field. The

magnetic field is assumed to be constant in time because we
are studying electrostatic turbulence. Therefore, all the infor-
mation on the structure of the velocity field is contained in
the velocity stream function. We use �� ,� ,�� as the coordi-
nates in toroidal geometry. At a fixed time t, we define a flow

structure as the set of points such that ��� ,� ,� , t�	�̄0,

where �̄0 is a constant. We define �0=�̄0 /max���, with
max��� being the maximum value � at time t. Therefore, �0
gives a fraction of the maximum value of � and
0
�0
1.

In general, either in numerical calculations or in analytical
modeling, we use a representation of � in Fourier series

���,�,�,t� = �
m,n

�mn��,t�sin�m� + n�� . �2�

Here, m and n are the poloidal and toroidal mode numbers,
respectively.

A first approach in characterizing the topology of a flow
structure is to determine its Betti numbers. For structures in
R3, only three of these topological invariants are nonzero
�15�. We denote them by b0, b1 and b2. b0 is the number of
arc-connected components of the structure, b1 is the number
of �independent� noncontractible loops, and b2 is the number
of voids.

As described in Ref. �11�, we use the software package
provided by the Computational Homology Project �CHomP�
�12�, that computes the Betti numbers of cubic spaces, i.e.,
spaces that are the union of a finite number of cubes with
unit side length and vertices with integer coordinates �13�.
The data files used by the CHomP code are in the form of a
list of cubes with integer coordinates. So, to analyze the to-
pological structure of the flow, the first thing to do is to
construct a cubical space that approximates as much as pos-
sible the flow structure,

���,�,������,�,�� 	 �̄0, 0 
 � 
 1, 0 
 � 
 2�, 0 
 �


 2�� . �3�

For a structure in R3, the maximum number of cubes that
can be used by the CHomP code is 2.6�108. In Ref. �11�, we
considered several ways of choosing the cubes to cover the
flow structure in an optimal fashion and to minimize the
number of cubes needed. In building the cubical space we
choose N�=N�=2N�, where N�, N� and N� are the number of
cubes in the radial, poloidal and toroidal direction, respec-
tively. Here, we follow the optimization method described in
Ref. �11�. In order to work with integer coordinates
��1 ,�1 ,�1�, we take the structure

	��1,�1,�1���
 �1

N�

,
2��1

N�

,
2��1

N�
� 	 �̄0, 0 
 �1 
 N�, 0


 �1 
 N�, 0 
 �1 
 N�� . �4�

This structure has the same topology as the one given in
Eq. �3�.
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The two relevant measures that we want to use are the
number of connected components and the number of cycles.
However, not all cycles and components have the same rel-
evance to the physics of the plasma. Small cycles in the flow
structure matter very little. These small cycles are not always
a property of the flows, but, in most cases, are the result of
the limitations in numerical resolution. The cycles we are
interested in are the large-scale cycles that are formed by
flow filaments turning all the way around the torus. In the
Appendix, we give an approach to measure the number of
large-scale cycles, c1.

Following the notation of the Appendix, let us call X our
structure and A the same structure after we cut it at �=�. The
number of large-scale cycles is given by Eq. �A10�,

c1 = b1�X,A� − b0�A� + b0�X� . �5�

Here, b1�X ,A� is the rank of the relative homology group
H1�X ,A� of the pair �X ,A�, and b0�X�, b0�A� are the zeroth
Betti numbers of the sets X and A, respectively.

From the excision theorem �15�, we know that the rank of
the relative homology, b1�X ,A�, can be calculated using sub-
sets of X and A that are around the region of the �=� cut, as
indicated in Fig. 1. That implies that the cubical set used as
data input can be relatively small and we do not reach the
limit set by the CHomP. We use the CHomP code to calculate
b1�X ,A� and we can reach without problem global resolu-
tions of 4800�4800�2400 cubes, which is the resolution of
the numerical results that we are analyzing.

The number of large-scale cycles c1 converges very fast
and in all the calculations presented here, we have well-
converged results for this parameter. With respect to the con-
nected components, we have a similar situation to the cycles.
There are some very small components in the cubical sets
that are related to the limited resolution of the system and
irrelevant to the physics. In order to detail information on the
size distribution of the components and to be able to handle
larger cubical sets than the CHomP code, we have built a
solver to calculate them.

The way we calculate b0 is by radial layers. We start at the
smallest radius and calculate b0 by adding a radial layer of
cubes at the time. In this way, we can define b0�r�, which is

the value of b0 for the structure ��� ,� ,� , t�	�̄0 with
0
�
r. Therefore, we not only calculate the global b0, but
we also see how b0 changes with radius. Furthermore, for

each component we calculate its size by the number of cubes
that it contains and its radial extent. This provides us with
additional information on the structure of the flow.

The size distribution of the components is not uniform.
For the numerical results of the resistive pressure-gradient-
driven turbulence, this distribution has two peaks: a large and
narrow peak at the smaller end of the range of sizes and a
broader peak at the other end, as can be seen in Fig. 2. If the
size of the connected components is normalized to the total
number of cubes, N��N��N�, then we have a measure of
the size of the component, which is independent of the res-
olution level. Using this normalization, we can see that the
peak of the size distribution at the smallest sizes moves
downwards as the resolution increases and its height de-
creases. This indicates that the components corresponding to
this peak depend on the resolution and they are not real com-
ponents of the flow structure. However, the second peak of
the distribution remains invariant as the resolution changes.
Therefore, these components in the second peak of the dis-
tribution are the real components of the flow structure.

We define a reference size, Nref =10−6N��N��N�. This
size corresponds to the gap between the two peaks in the
distribution. We select the components such that Nci�Nref as
the relevant ones for the flow structure. Here, Nci is the num-
ber of cubes of the component i. In analogy to the cycles, we
will call these components large-scale components and their
number is n0.

In summary, the two measures that we use in the diagno-
sis of the flow structures are the number of large-scale con-
nected components n0 and the number of large-scale cycles,
c1.

III. DYNAMICAL EVOLUTION OF THE RESISTIVE
PRESSURE-GRADIENT-DRIVEN TURBULENCE

Using the reduced set of resistive MHD equations �16,17�
in the electrostatic approximation, we have studied the time
evolution of the turbulence in a steady state for different
values of �. For the parameters of these calculations �18�, the

FIG. 1. �Color online� Torus showing a cut along the poloidal
angle �=0.
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FIG. 2. �Color online� Probability distribution of the size of the
conected components for �0=0.01 and three levels of resolution,
N�=600, 1200, and 2400.
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resistive ballooning modes are unstable above a � value of
0.0025. The nonlinear calculations have been done for four
�0 values, 0.003, 0.006, 0.01, and 0.05. Here, �0 denotes the
value of � at the magnetic axis.

As already mentioned, for �0=0.003, a single quasicoher-
ent flow structure forms �2,10� with a single toroidal mode
n=N dominating the �-spectrum, Eq. �2�. This can be seen
in Fig. 3, where we show the toroidal mode spectrum of the
radial velocity for different values of �0. The instantaneous
spectrum is obtained from the expansion �2� by

V�,n
2 =

1

2�
m

m2

0

1 �mn
2 ���
�2 d� . �6�

In Fig. 3, we have plotted the time-averaged spectra over
the steady-state phase of the time evolution. Therefore, for
�0=0.003, we expect a flow structure of a single mode type,
a single value of n, where filamentary eddies form at the
singular surfaces, they twist around the torus and merge in
the outer regions forming the so-called streamers due to the
ballooning effect. An example for an N=3 structure is shown
in Fig. 4. In this figure, we have used such a low-N case just
to be able to visualize the structure. For the numerical results
and for �0=0.003, the N=23 is the dominant structure. In

Fig. 5, we have plotted the function � for this � value. It is
very hard to visually understand the structure.

The qualitative structure of � is such that at low values of
�0 all filamentary eddies are thick enough to merge every-
where and there are practically no detectable large cycles. On
the other hand, at values of �0 close to 1, the filamentary
eddies in the inner region of the torus have thinned so much
that they break and the large-scale cycles disappear. There-
fore, there is and optimal range of values of �0 in which we
can explore most efficiently the topological structure.

The optimal range of values can be inferred from Fig. 6,
where we have plotted the number of large-scale cycles as a
function of �0 for the different � values. From Fig. 6, we
can see that the best range of values of �0 is between 0.1 and
0.3.

In Fig. 7 and for �0=0.1, we can see the time evolution of
the number of large-scale cycles for the different � values.
For the lowest � value, �0=0.003, an N=23 quasicoherent
structure dominates the spectrum at all times. There is prac-
tically no change in time of the topological structure. As �
increases, different quasicoherent structures compete, this
leads to intermittent behavior and oscillations of c1 as shown
for �0=0.006. At higher � values, the mean value and the
time variation of c1 decrease but its averaged value remains
relatively high.

The values of c1 are very well converged for a resolution
of N�=4800. In Fig. 8, we show an illustration of the con-
vergence of c1 with the number of cubes. We can see that
even for N�=1200 the values of c1 are very close to their
converged values.
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FIG. 3. �Color online� Toroidal mode spectrum of the square of
the radial velocity for different values of �. These spectra have been
calculated by averaging over the steady state regime of the resistive
pressure-gradient-driven turbulence calculations from Ref. �18�.

FIG. 4. �Color online� An example for an N=3 flow structure
showing 3 filamentary eddies with m=3, 4, and 5.

FIG. 5. �Color online� Contour plots of the function � for
�0=0.003 as obtained from the numerical calculations. The domi-
nant structure is N=23.

FIG. 6. �Color online� Number of large-scale cycles as a func-
tion of �0 at a given time for different �0 values.
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The time evolution of the large-scale components is illus-
trated in Fig. 9. In this figure, we have plotted n0 as a func-
tion of time for �0=0.3, N�=1200, and the same four �0
values as in Fig. 7. The number of large-scale components
oscillates in time more than c1.

The values of n0 are well converged as we change the
number of cubes. An example is shown in Fig. 10. In this
figure, we have plotted the number of large-scale compo-
nents, n0, as a function of �0 for �0=0.01 and for the differ-
ent levels of numerical resolution. The distributions for
N�=1200 and 2400 lie almost on top of each other. The one
for 600 is slightly displaced. Therefore, for N�=1200, the
number of large-scale components is well converged. For
low values of �0, the number of components increases as �0
increases because filaments start to break, but at large �0
they decrease because the flow structure becomes smaller
and smaller.

We summarize in Fig. 11 how the topological parameters
of the flow change with �. We have plotted the time average
of c1 and n0 as functions of �0. The error bars give the

standard deviation of these two quantities during the time
evolution. The plot is done for �0=0.1. Above the instability
threshold there is a sharp increase in c1 and then as � in-
creases c1 decreases. However, at the higher � values, the
decrease of c1 is rather slow. On the other hand, n0 is equal
to 1 just above the threshold and jumps to higher values as �
increases.

IV. RADIAL EXTENT OF THE FLOW STRUCTURES

To better understand the convergence of the number of
large-scale components and their size distribution, we exam-
ine them in more detail. We will focus on the radial extent of
the components because we are interested in relating them to
the radial transport.

In all cases considered, there is always a large flow com-
ponent. This component is well described at all levels of
resolution and its size decreases with increasing �0. As could
be expected, there is no convergence problem with this com-
ponent when we vary the number of cubes.

FIG. 7. �Color online� Time evolution of the number of large-
scale cycles for different �0 values and for �0=0.1 during the
steady-state regime of the resistive pressure-gradient-driven turbu-
lence calculations from Ref. �18�.
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FIG. 8. �Color online� Convergence of the number of large-scale
cycles, c1, with varying resolution. The three cases plotted here are
for N�=1200, 2400, and 4800. The time evolution corresponds to
the steady-state regime of the resistive pressure-gradient-driven tur-
bulence calculations from Ref. �18� for �0=0.01.

FIG. 9. �Color online� Time evolution of the large-scale compo-
nents as a function of time for �0=0.3, N�=1200, and the same
four �0 values as in Fig. 7.

FIG. 10. �Color online� Number of large-scale components n0 as
a function of �0 for �0=0.01 and for the different levels of
resolution.
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Let us consider now the other large-scale components of
the flow. In Fig. 12, we have plotted a set of the large-scale
components for �0=0.01 and for �0=0.1. We represent them
as a function of radius by their radial extent, shown as a
horizontal line. They are ordered by size, total number of
cubes, from bottom to top. We show these components for
three levels of resolution. We can see that the pattern for
N�=1200 and 2400 is practically the same. Only two com-
ponents that were not connected for N�=1200 merge in a
single one for N�=2400. This confirms that all large-scale
components are well described for resolutions of the order of
N�=1200.

Even at the highest � value considered here, �0=0.05,
there is a large connected component for a broad range of

values of �0 up to �0=0.4. For �0=0.1, the number of
large-scale components is small, 8. The large component
dominates most of the radial range; a few other components
appear mostly inside and due to the breaking of some fila-
ments. As we increase �0, we see a continuous breaking of
the filaments in the inner region of the radius with the domi-
nant component reducing its size from the inside. This can be
seen in Fig. 13 where we have plotted the large-scale com-
ponents for �=0.05 and different values of �0. In this figure,
we have not plotted all the large-scale components in each
case to avoid crowding too much the plot. We have limited
the graph to the largest 16 components.

In Fig. 14, we give the number of large-scale components
as a function of �0 for the four values of �0 considered in
this study. The values in this plot are the time averages and
the error bars stand for the standard deviation. For low val-
ues of �0, there is a slight increase in the number of com-
ponents as � increases. This could be expected because the
level of turbulence increases. However, we can see that the
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FIG. 11. �Color online� Time average of c1 and n0 as a function
of �0. The error bars give the standard deviation of these two quan-
tities during the time evolution. The plot is done for �0=0.1 and the
same nonlinear calculations and resolution levels as in Figs. 7 and
9.

FIG. 12. �Color online� Large-scale components for �0=0.01
and for �0=0.1. We represent them as a function of radius by their
radial extent, shown as a horizontal line. They are ordered by size,
total number of cubes, from bottom to top. We show these compo-
nents for three levels of numerical resolution indicated by the dif-
ferent values of N�.

FIG. 13. �Color online� Large-scale components for �0=0.05,
N�=4800 and different values of �0. This graph is limited to the
largest 16 components.

FIG. 14. �Color online� Number of large-scale components as a
function of �0 for the four values of �0 considered in this study.
The values in this plot are the time-averaged values for each �0 and
the error bars are the standard deviations.
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time variation reflected by the error bars is of the same order
as the change with �.

For all � values, we have also calculated c1�r�, which is
the number of large-scale cycles up to the radius r. The num-
ber of large-scale cycles is relatively uniformly distributed
along the radius. For the different values of �0, this is illus-
trated in Fig. 15. As � increases, the total number of cycles
decreases as we already seen in Fig. 11, but this decrease is
relatively uniform along the radius. The largest component
near the edge contains a number of these cycles.

By comparing the components with the number of large-
scale cycles as a function of the radius, we get a better pic-
ture of the flow structure. An example of such a comparison
is done in Fig. 16 for one of the cases from Fig. 13, the one
with �0=0.4. We can see that at the lowest value of the
radius, the components do not have any cycles. For r /a
around 0.6, some of the components, which have broken
away from the large one, have a few cycles. However, most
of the cycles are on the large component and near the edge.
On the outer region much of the structure seen at low � has

survived at high �. This distribution of large-scale compo-
nents and large-scale cycles is far from uniform and shows
clearly the lack of homogeneity of the turbulence.

The presence of these large components is a clear indica-
tion that the turbulence is neither homogeneous nor isotropic
even at the high � value. This lack of homogeneity was not
easy to detect in the two-dimensional �2D� contour plots of
stream function. An example of such plots is shown in Fig.
17. This absence of homogeneity and isotropy has an impact
in the particle transport. In Ref. �18�, we already observed
this lack of homogeneity as a dependence of the exponent of
the algebraic tail of the distribution of particle flights on the
poloidal position of the initial distribution of particles. We
will look in more detail at the impact of the topology on
transport in the next section.

V. RELATION BETWEEN FLOW TOPOLOGY AND
TRACER TRANSPORT

One way to study the connection between topological
properties of the flow and transport properties is by using the
continuous time random walk �CTRW� approach �19�. The
CTRW approach allows us to construct transport models
based on statistical properties of the microscopic motion of
the particles. Basically one assumes that the particle trajec-
tories are composed by waiting times at a given position and
particle flights between two different consecutive positions.

Let 
��� be the probability that a particle performs a
flight of length �, and ����, ��0, the probability that a
particle waits a time � between two consecutive flights. Mon-
troll and Weiss �19� derived an evolution equation for the
probability of finding a particle at point x at time t, P�x , t�.
Namely,

P�x,t� = P0�x��1 − 

0

t

��t��dt��
+ 


0

t

��t − t���

−�

�


�x − x��P�x�,t��dx��dt�,

�7�

where P0�x� is the initial condition at time t=0. This equa-

FIG. 15. �Color online� Number of large-scale cycles in the flow
structure with �0=0.1 as a function of radius for the different val-
ues of �0.

FIG. 16. �Color online� Large-scale components and c1�r� for
�=0.05 and �0=0.4. The largest number of large-scale cycles is
localized on the larger component near the plasma edge.

FIG. 17. �Color online� Contour plot of � on the toroidal cross
section �=0 at a given time for �0=0.05.
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tion is solved by using a Laplace-Fourier transform. The
asymptotic behavior for x and t going to infinity gives the
fluid limit of this equation. If in the large t limit ��t� is a
decaying exponential and for the large x limit of 
�x� is a
Gaussian, the fluid limit of the CTRW equation is the normal
diffusion equation,

�P

�t
= D

�2P

�x2 . �8�

However, if in the large t limit ��t�→ t−��+1� and for the
large x limit 
�x�→ �x�−��+1�, the fluid limit of the CTRW
equation is a fractional differential equation

��P

�t� = D
��P

� �x��
, �9�

where we use the conventional notation �� and �� for the
indexes of the fractional derivatives in space and time. In the
rest of the paper, the symbol � is used for the ratio of the
plasma pressure to the magnetic pressure.

For the definition of the fractional derivatives, see Ref.
�8�. This different asymptotic behavior of the distribution
functions changes fundamentally the nature of the transport
and it is called anomalous diffusion.

In this section, we take a first step in connecting the to-
pological properties of the turbulent flow considered in the
last two sections with the properties of the particle tracer
distribution. When we use the CTRW to interpret the trans-
port results, we take the variable x to be the radial variable.
The tracer particle trajectories are the solution of the equa-
tion

dr

dt
= �� � b̂ + V�b̂ , �10�

where we add a constant velocity V� along the magnetic field
to the perpendicular velocity given by Eq. �1� in order for the
tracers to explore the whole topology of the torus. More
details on the tracer particle transport for the configurations
for the resistive pressure-gradient-driven turbulence can be
found in Ref. �18�. In this section, we analyze only the con-
nection between transport properties and flow topology.

As the tracer particles move by the turbulent flow, we
consider the particles being trapped for certain periods of
times in the flow filaments and then taking steps or flights
between trapping times. This way of looking at the tracer
particle motion allows us to connect with the CTRW trans-
port approach.

To understand the transport from the CTRW perspective,
we identify the probability distribution function of the wait-
ing times with the distribution function of the trapping times.
As discussed in �10� and only for the quasicoherent flow
structure, the existence of the filamentary structures induces
an algebraic tail to the distribution of the trapping times. In
absence of large-scale cycles, the distribution of trapping
times has an exponential tail. As we commented above, the
significance of this change is that power law leads to frac-
tional derivative in time while the exponential to a normal
first order derivative.

To calculate the probability distribution of the trapping
times and the flights we have to first define both of them in
the context of our numerical calculations. There is not a
unique way of defining particle flights. Here, we are inter-
ested in the radial transport and for this reason we consider
flights only in the radial direction. We use the same definition
as in Ref. �18�. We say that a particle tracer performs a flight
while it moves on a trajectory keeping the same sign of the
radial velocity.

Let us define the length of the flight i in the radial direc-
tion as ��i. If a flight is very short, ��i /a�0.005, it means
that the particle tracer is in a filament, we do not include it
with the flights. We consider in this case that the tracer is
trapped in a filament and we add the times of the consecutive
short flights to calculate the trapping times. The value chosen
for the upper bound of ��i, 0.005a, corresponds to the
smaller value of the different filament widths. In Ref. �10�,
we used an alternative definition for the trapping time. It was
defined as the time that two particles initialized close to-
gether stick together. Both definitions lead to very similar
trapping time distributions.

For the calculations discussed here, we can see that the
range of the algebraic tail of the trapping time distribution is
a function of �. In Fig. 18, we have plotted the distribution
of trapping times for different �0 values. As �0 increases, the
temporal range of the algebraic tail decreases significantly.
This shows that a correlation exists between the number of
large-scale cycles and the time range of the power-law re-
gion. For the high �0 value, where the number of cycles is
small, it is not clear that the power-law region even exists.
Higher resolution calculations are needed to clarify this
point. We do not have yet a quantitative relation between c1
and this temporal range, but this problem is under study.

The fragmentation of the flow structure in components
may have an impact on the length of the flights of the par-
ticles. In the previous section, we have described how frag-
mented the flow is. We can consider all the large-scale com-
ponents of the flow for all values of �0. The distribution of

FIG. 18. �Color online� Distribution of trapping times for differ-
ent �0 values. In the figure is also shown the range of the algebraic
tail for each individual case. To fit in the figure, the data for the
�0=0.006 has been multiplied by 1000 and for the �0=0.01 by 100.
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the large-scale connected components can be compared to
the distribution of the particle flights at a given time. That is,
we calculate the flights for a given flow distribution without
considering its time evolution. A comparison between these
two distributions is shown in Fig. 19 for �0=0.01. Both dis-
tributions have similar ranges and exponents for the power
tail.

When the flights are calculated for a time evolving flow,
the tail of the flights distribution has less oscillations that the
one shown in Fig. 19, but the exponent of the algebraic fall
off is somewhat larger, −2.2 compared to −1.7. The reason is
that there are other dynamical phenomena that contribute to
the flights, like the occurrence of avalanches. This combina-
tion of a distribution of power-law steps with dynamically
triggered avalanches has already been considered within the
CTRW approach. In Refs. �20,21�, a version of the CTRW
model was introduced with Lévy distributions for the flights
and a critical gradient condition to include the dynamical
effects. This approach will be pursued further in order to
relate the distribution of the large-scales components, which
is effectively an eddy-size distribution, to the dynamics of
the transport.

Therefore, the two topological properties of the turbulent
flows considered in this paper, the large-scale cycles and
large-scale components, provide the basis for the interpreta-
tion of some of the basic features of the turbulence-induced
transport. They also show how the characteristic properties
of the transport change as � increases.

VI. CONCLUSIONS

The number of large-scale cycles and the number of large-
scale connected components of the flow structure are a useful
characterization of the topological properties of the turbulent
flow in the resistive pressure-gradient-driven model. They
are useful in characterizing the transition to the fully devel-
oped turbulence state. This is a quantitative characterization,
which gives a better indication on how the flow transitions
from single quasicoherent mode at low � to a fully devel-
oped turbulence.

They are also useful in providing a connection between
properties of the turbulence and properties of the induced
transport. The number of large-scale cycles is directly related
to the range of the algebraic tail of the particle trapping
times. The distribution of the large-scale components gives
the distribution of flights at a fixed time. These connections
need to be pursued in a more quantitative manner in the
future.

In Ref. �18�, we concluded that the tracer particle trans-
port in a �0 range around 0.01 could be described by frac-
tional differential equations. These equations change to nor-
mal diffusion at higher �. We see now that this change is due
to the decrease of the large-scale cycles and to the increase in
the number of large-scale connected components of the flow.

These topological parameters also reveal the presence of
relatively large flow structures, which cannot be easily de-
tected by pure visualization of the structure. The presence of
relatively large components at high � is an indication that the
turbulence is not homogeneous at these � values.
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APPENDIX: CALCULATION OF THE NUMBER OF
LARGE-SCALE CYCLES

For resistive pressure gradient driven turbulence, each
�m,N component is localized at the radial position of its sin-
gular surface �m. Because of the angular dependence associ-
ated with this Fourier component, this localization of the
flow appears as a filamentary eddy twisting around the torus
and closing on itself after m toroidal turns for N poloidal
turns. On Fig. 4, we show a simple example for N=3. The
filaments are toroidal knots on their own, if they are viewed
as solid, their Betti numbers are simply b0=1, b1=1, and
b2=0.

There is one such filament in each rational surface, but
they merge on the outer region of the torus. This happens
because the magnetic field is weaker in the outer region of
the torus and the flow filaments are thicker �ballooning ef-
fect�. The region where the filaments merge are the so-called
streamers �22�. Because they merge, they form a single con-
nected component, so b0=1, but the number of cycles they
form is more complicated to evaluate. In Ref. �11� we have
shown that this number is

FIG. 19. �Color online� Distribution of the large-scale connected
components and distribution of the particle flights at a given time
for �0=0.01.
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b1 = 1 + N�m1 − m0� , �A1�

where m0 and m1 are the minimum and maximum m values
in the structure, respectively. In this particular case m0=3,
m1=5, and b1=7.

In this simple example, the flow structure twists around
the torus, and there are no other cycles than the large-scale
cycles around the torus. However, when we cover the struc-
ture with cubes, some of them covering different filaments
can touch and in this way they may create small false cycles.
To get rid of these false cycles, we first notice that they are
preserved when we cut the torus along the poloidal angle
�=� while the large scale cycles are broken. Let us call X a
cubical set approximating our structure and A the result of
cutting X at �=�. Then, let b0�X�, b1�X� and b2�X� be the
Betti numbers of X and b0�A�, b1�A� and b2�A� the ones of A.
In the situation just described, the number of �independent�
cycles of X minus the number of �independent� cycles of A,

c1 = b1�X� − b1�A� , �A2�

is the number of �independent� large-scale cycles of our
structure.

When we work with the cubical sets covering a structure,
small false cycles may form, as we have already mentioned.
Some of these cycles may meet the poloidal angle �=� and
so disappear as cycles of A. Therefore, the difference
b1�X�−b1�A� may be a bit greater than the number of cycles
of our simplified structure. The specific method described
here cannot be applied in general. For instance, it may hap-
pen that cutting the configuration creates new cycles. We
need to develop an approach on the same lines described
here but with broad validity.

Let us call X a cubical set approximating our structure and
A the result of cutting X at �=�. Let b0�X�, b1�X�, and b2�X�
be the Betti numbers of X and b0�A�, b1�A� and b2�A� the
Betti numbers of A.

In the general case, c1 is greater than the difference
b1�X�−b1�A�. For instance, some cubes may form a tube in X
near the poloidal angle �=�, and get cut in A in two por-
tions. If the tube is closed at one end, we will have a non-
contractible loop in A that is contractible as a loop in X.
Figure 20�a� illustrates this phenomenon. So when we com-
pute the difference b1�X�−b1�A�, we subtract a cycle of A
that was not taken into account in b1�X�. If the tube is not
closed at either end, then we will have two independent
loops in A that are not independent in X, as we can deform
one into the other. In this case, we subtract two cycles of A
that correspond to just one in X. Figure 20�b� illustrates this
phenomenon.

Therefore, the number c1 we want to compute is of the
form

c1 = b1�X� − b1�A� + n1, �A3�

where n1 is the number of independent cycles of A that can-
not be contracted to a point in A but can be contracted to a
point in X or can be deformed to another cycle in X.

For the computation of c1 we shall use homology theory.
Homology theory links a set of groups to each space X.
These groups are the so-called homology groups and denoted

by Hj�X�, for each integer j	0. In our problem, X is a sub-
space of R3 and Hj�X�=0, if j	3. The first three groups are
of the form

Hj�X� � ��i1, . . . ,ibj�X���i1, . . . ,ibj�X� � Z� = Zbj�X�, j = 0,1,2

�A4�

Here, the symbol � denotes group isomorphism. The ranks
of the homology goups Hj�X�, bj�X�, are called the Betti
numbers of the space X. Their meaning is as follows:

b0�X� is the number of connected components of X. Each
one of the basis elements
�1,0 , . . . ,0� , �0,1 , . . . ,0� , . . . , �0,0 , . . . ,1��Zb0�X� represents
one of the connected components of X.

b1�X� is the number of independent cycles that cannot be
contracted to one point in X. Each one of the basis elements
�1,0 , . . . ,0� , �0,1 , . . . ,0� , . . . , �0,0 , . . . ,1��Zb1�X� represents
one of the cycles of X.

b2�X� is the number of independent cavities of X. Each
one of the basis elements
�1,0 , . . . ,0� , �0,1 , . . . ,0� , . . . , �0,0 , . . . ,1��Zb2�X� represents
one of the cavities of X.

On the other hand, homology theory also links to each
pair of spaces, A�X, a set of groups Hj�X ,A� called relative
homology groups of the pair �X ,A�. For compact spaces of
R3, all these groups are zero from the fourth onwards. The
first four groups are

Hj�X,A� � Zbj�X,A�, j = 0,1,2,3. �A5�

The relative homology groups are related to the homology of
two spaces by a sequence of morphisms,

FIG. 20. �Color online� �a� Cutting a closed tube at one end
generates a closed tube at one end and a cycle; �b� cutting a cycle
generates two cycles.
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0 → H3�X,A� → H2�A� → H2�X� → H2�X,A� → H1�A�

→ H1�X� → H1�X,A� → H0�A� → H0�X� → H0�X,A� → 0,

�A6�

that is an exact sequence, i.e., the image of each morphism is
equal to the kernel of the next morphism.

The morphisms Hj�A�→Hj�X�, j=0,1 ,2 are induced by
inclusion.

Recall that in Eq. �A3�, we have denoted by n1 the num-
ber of independent cycles of A that cannot be contracted to a
point in A but can be contracted to a point in X or can be
deformed to another cycle in X. Those cycles generate a
subgroup Zn1 �H1�A�, that is precisely the kernel of the mor-
phism H1�A�→H1�X�. Therefore, from the sequence �A6� we
get a sequence

0 → Zn1 → H1�A� → H1�X� → H1�X,A� → H0�A� → H0�X�

→ H0�X,A� → 0 �A7�

that is also exact and this implies that the alternate sum of
the ranks is zero,

n1 − b1�A� + b1�X� − b1�X,A� + b0�A� − b0�X� + b0�X,A� = 0.

�A8�

Hence,

c1 = b1�X� − b1�A� + n1 = b1�X,A� − b0�A� + b0�X� − b0�X,A� .

�A9�

In our case, all the components of X have points of A, so that
b0�X ,A�=0, and

c1 = b1�X,A� − b0�A� + b0�X� . �A10�

Since the software CHomP also evaluates the relative homol-
ogy, this formula can be used to compute c1.

Notice that the relative homology is only defined when A
is a subspace of X. However, in the previous description, that
was not the case. Actually, A has the same number of cubes
as X. In practice, we have slightly expanded the cubical
space X along �=� by duplicating the set of cubes at this
poloidal angle. This change does not alter the topology of X.
The subspace A is the result of eliminating this set of dupli-
cated cubes.

The excision theorem �15� allows to calculate the relative
homology of �X ,A� using subsets of X and A that are around
the region of the �=� cut. That implies that the cubical set
used as data input can be reduced by a factor of 3 / �N�+1�.
Therefore, we can go to higher resolutions in calculating
b1�X ,A�.

�1� B. A. Carreras, V. E. Lynch, D. E. Newman, and G. M.
Zaslavsky, Phys. Rev. E 60, 4770 �1999�.

�2� B. A. Carreras, V. E. Lynch, L. Garcia, M. Edelman, and G. M.
Zaslavsky, Chaos 13, 1175 �2003�.

�3� D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Phys.
Rev. Lett. 94, 065003 �2005�.

�4� R. Sanchez, B. A. Carreras, D. E. Newman, V. E. Lynch, and
B. Ph. van Milligen, Phys. Rev. E 74, 016305 �2006�.

�5� I. Calvo, R. Sanchez, B. A. Carreras, and B. Ph. van Milligen,
Phys. Rev. Lett. 99, 230603 �2007�.

�6� J. A. Mier, R. Sanchez, L. Garcia, B. A. Carreras, and D. E.
Newman, Phys. Rev. Lett. 101, 165001 �2008�.

�7� R. Sanchez, D. E. Newman, J.-N. Leboeuf, B. A. Carreras, and
V. Decyk, Phys. Plasmas 16, 055905 �2009�.

�8� I. Podlubny, Fractional Differential Equations �Academic, San
Diego, 1999�.

�9� L. Garcia, B. A. Carreras, and V. E. Lynch, Phys. Plasmas 9,
47 �2002�.

�10� G. M. Zaslavsky, B. A. Carreras, V. E. Lynch, L. Garcia, and
M. Edelman, Phys. Rev. E 72, 026227 �2005�.

�11� B. A. Carreras, I. Llerena, L. Garcia, and I. Calvo, Phys. Rev.

E 78, 066402 �2008�.
�12� http://chomp.rutgers.edu
�13� T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational

Homology �Springer, Berlin, 2004�.
�14� I. Calvo, L. Garcia, B. A. Carreras, R. Sanchez, and B. Ph. van

Milligen, Phys. Plasmas 15, 042302 �2008�.
�15� J. M. Munkres, Elements of Algebraic Topology �Addison-

Wesley, Reading, MA, 1984�.
�16� H. R. Strauss, Phys. Fluids 20, 1354 �1977�.
�17� J. F. Drake and T. M. Antonsen, Jr., Phys. Fluids 27, 898

�1984�.
�18� L. Garcia and B. A. Carreras, Phys. Plasmas 13, 022310

�2006�.
�19� E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 �1965�.
�20� B. Ph. van Milligen, R. Sanchez, and B. A. Carreras, Phys.

Plasmas 11, 2272 �2004�.
�21� R. Sanchez, B. Ph. van Milligen, and B. A. Carreras, Phys.

Plasmas 12, 056105 �2005�.
�22� P. Beyer, S. Benkadda, X. Garbet, and P. H. Diamond, Phys.

Rev. Lett. 85, 4892 �2000�.

TOPOLOGICAL CHARACTERIZATION OF THE… PHYSICAL REVIEW E 80, 046410 �2009�

046410-11


